APS Star Tracker
Field Programmable Gate
Array Design

Rishi Kurichh

NASA Goddard Space Flight Center

Applied Engineering and Technology Directorate

Guidance, Navigation, & Control Center

PIP II

Code 573

2/25/2003

ABSTRACT

 The Active Pixel Sensor (APS) Star Tracker FPGA (Field Programmable Gate Array) provides the interface between the tracker’s processor and its optoelectronic sensor. As the star tracker development system evolves into a flight unit, the FPGA must be modified with each change in processor, sensor, or method of controlling the sensor. This paper will discuss the FPGA design work, including the methodology involved, as the system evolves from an initial breadboard system into the final flight system.

OUTLINE

3INTRODUCTION

3DEVELOPMENT SYSTEM OVERVIEW

4STARTRACKER FPGA DEVELOPMENT

17CURRENT AND FUTURE WORK

17CONCLUSION

19APPENDIX A – EXCERPTS FROM SYNPLIFY TIMING AND RESOURCE USAGE REPORTS

22APPENDIX B – EXCERPTS FROM XILINX TIMING REPORTS

INTRODUCTION

 This paper covers the FPGA (Field Programmable Gate Array) design work, including the methodology, required as the Active Pixel Sensor (APS) star tracker migrated from an initial breadboard system to the flight star tracker. The star tracker development system contains a processor, the APS, an FPGA (Field Programmable Gate Array), memory, and other support electronics. For each change in the processor, sensor, or method of controlling the sensor, the FPGA has to be modified to provide an appropriate interface between the main components of the system. The time required to modify the design or port it to a different chip can be significantly reduced through the use of a standard hardware description language, modular design techniques, and extensive simulation.

DEVELOPMENT SYSTEM OVERVIEW

 Figure 1 shows a simplified view of how the main devices interact with each other. The star tracker requires the processor to perform the following functions: receive commands from either the satellite/GSE (Ground Support Equipment), issue commands to the sensor, compare computed distances between stellar sources in the sensor data with measured distances in a known star catalog, and analyze the data in order to present a summary in response to the satellite’s/GSE’s commands. In order to provide the control signals and timing required to operate the sensor, an FPGA must act as the intermediary between the processor and the sensor. Commands are read from and data is stored into asynchronous memory. The processor writes commands through the FPGA to the memory starting at a pre-defined address. The FPGA periodically reads commands (from the memory starting with this address), controls the sensor in response to the commands, and writes data to the memory (starting at another pre-defined address). The processor reads data from the memory via the FPGA before sending more commands.

Figure 1. High-level view of interfaces to FPGA in development system

STARTRACKER FPGA DEVELOPMENT

 Due to the FPGA’s role as an intermediary between the processor and sensor, the FPGA had to be modified each time a change in processor, sensor, or method of controlling the sensor was implemented. Careful attention to providing a well-structured, portable design eased these required modifications and provided for testability. The FPGA revisions accomplished so far include: migrating from a Xilinx-specific schematic-based design into a design written in a standard hardware description language, changing the method of controlling the original sensor, reworking the FPGA design to control the Star250 sensor instead of the original sensor, and modifying the FPGA design to interface with the ColdFire processor instead of the 586 processor. All of these changes are part of the process of evaluating and testing different sensors and components of the system, eventually evolving into the flight system with the finalized selections of processor, sensor, and methods of control.

Initial Changes In FPGA Design
Switch from schematic-based to VHDL-based

 To make the FPGA design easier to modify, maintain, and port to different chips (such as a radiation-hardened Actel chip), it was decided to change the FPGA design from a Xilinx-specific, schematic into a design written in VHDL, a standard hardware level description language. [VHDL stands for VHSIC Hardware Level Description Language. VHSIC stands for the Very High Speed Integrated Circuit program, which is a US Government program that promoted the development of hardware description language standardization for government agencies and contractors. VHDL has been an IEEE standard (VHDL-1076) since 1987 and has undergone several revisions.] Rather than performing a direct conversion of the Xilinx-specific schematic design into VHDL, a decision was made to implement an entirely new VHDL design of the FPGA. This decision was based on two factors: program schedule constraints and an engineering desire to provide an ability to modify the methods of controlling the sensor. Though costly in short-term resources (specifically time and money), the limited investment would bring about a substantial savings as further system evaluation activities were performed.

Changes in Timing

 The initial schematic-based design started a new hardware cycle approximately every 25 milliseconds. It read commands out of the memory (which the processor had written to previously), decoded the commands, controlled the sensor, and wrote data back to the memory for each command processed. After processing all commands, the FPGA sent an interrupt to the processor. The processor then had the remaining time left (of the 25 milliseconds cycle) to read the data and write additional commands (to be processed in the next 25 millisecond cycle). In order to obtain better precision and resolution, the FPGA controlled an external 12-bit ADC (Analog to Digital Converter) chip instead of using the sensor’s internal 10-bit ADC. Since a new set of commands were processed every hardware cycle, the timing of the hardware cycle provided a base for the integration time. For example, if the software wanted to read a window of pixels, it would reset the pixels in one hardware cycle, wait x number of hardware cycles, and send a read command to those pixels in the subsequent hardware cycle. The time elapsed between the reset and the read of those pixels is the time that the light has had the opportunity to “integrate” or build on the pixel. Therefore, one can see that the integration time will be a multiple of the hardware cycle time.

 The new design called for timing changes in the controlling of the sensor, as well as for more handshaking between the FPGA and the processor. The major timing change was to reduce the hardware cycle time to around 5-7 milliseconds. This provided a smaller time base for the integration time, thereby increasing the control over the resolution of the integration time. The handshaking signals were designed to ensure that the software wasn’t trying to access the same resources concurrently with the FPGA logic and to provide a status register to indicate any errors that the FPGA might be able to detect.

Implementation of Initial Changes in FPGA Design

 One of the primary reasons to convert the design over into VHDL was to provide a portable, modular design to facilitate future modifications. VHDL is a standard language in which a design can be written independent of the chip that is targeted. The design can then be imported by any major vendor’s tool chain and synthesized for a specific chip. In order to make the design modular, it was decided to make it a hierarchical design with the top-level VHDL file instantiating three components, one for each major interface.

 The partitioning of the FPGA design is shown in Figure 2. A processor control entity handled the processor’s reading from and writing to both the FPGA’s internal registers and the memory connected to the FPGA. The sensor control or pixel access control entity was to handle the following: the implementation of the hardware cycle timing, the logic to perform the reading of commands from memory, the sensor control logic, and the logic to write data back to memory. Finally, the memory control entity would control arbitration between the two other main entities for memory access by giving the processor control entity access to the memory only when the software access flag was set.

Figure 2. Partitioning of FPGA design

 The pixel access control entity comprised most of the logic of the design, since it was responsible for reading commands from the command queue in memory as well as sending control signals with the right timing to the sensor. Due to the size of this portion of the design, the pixel access control entity was further partitioned by instantiating a command queue processing entity within it. This command queue processing entity handled reading commands from and writing data back to memory as well as performing the handshaking checks. The command queue processing entity was further partitioned through instantiation of an entity that handled processing an individual command. This lowest-level entity was comprised of the logic to implement the control of the sensor in response to a command. This hierarchy is shown in Figure 3. Most of the logic for checking and setting handshaking signals, processing the command queue, controlling the sensor, and writing data back to memory took advantage of state machines to give the appropriate timing. State machines and timing logic were designed based on timing measurements obtained from timing diagrams, datasheets, and the previous schematic design. Test signals were placed on each entity so that signals could be brought from any level in the hierarchy out to test pins that were routed to a header on the board. This shortened the debugging cycle by providing a method to externally view most of the design.

 Common conventions were used in the decision of signal names and code structure. Entity names were prefixed with a letter indicating the type of port (“i” for input, “o” for output, “b” for bi-directional). Descriptive port and signal names were used to indicate their intended purpose. Active-low signals were denoted with a “_n” suffix. The code was separated into one entity per VHDL file, and a comment block at the beginning of each file described the entity. Sections of code were also commented to describe their purpose. These conventions were used consistently throughout the design in order to aid a reader/reviewer of the code to quickly understand its logic and flow control.

Simulation

 Simulation VHDL files, commonly referred to as a “test bench”, were written after the initial design was completed. The goal for the “test bench” design was to be able to simulate at least a full cycle of the FPGA design. A cycle begins when the software writes commands to the memory via the FPGA, allows the FPGA to perform all of its functions, and ends when the software reads out the data and writes new commands.

 (Outside FPGA

 (Outside FPGA

Figure 3. Expanded View of the FPGA’s Sensor Control Logic Hierarchy
 Innoveda’s Fusion/Speedwave VHDL design simulation software was used to perform the simulation. In order to simulate the FPGA design, the appropriate signals or stimuli had to be provided. To do this, a top-level VHDL file or “test bench” instantiated four entities: the actual design that would go into the FPGA, a memory simulation model that was obtained from the chip's manufacturer, a simulation model of the processor’s role, and an APS sensor simulation model (See Figure 4). The processor simulation model read the data from and wrote commands to the FPGA. It read a command file, which was a text file written in a certain format, and then sent the commands contained therein. The sensor simulation model accepted the sensor control signals that the FPGA outputted and fed data back when the control signals started a sensor read operation. The data read back by the processor simulation model from the FPGA design was written to an output text file. Before actual system testing, this test bench was used in Innoveda’s Fusion/Speedwave VHDL simulation software to simulate a full cycle of the FPGA design flow in response to various commands that would be sent to the FPGA. The proper operation of the state machines in response to various commands was confirmed, as well as the memory access and sensor control logic. Extensive simulation helped resolve many of the initial design bugs without having to go through physical system testing and debugging.

Figure 4. Overview of Test Bench Components

Synthesis process
 In order to perform real system testing, it was necessary to perform the synthesis process of converting the FPGA design from VHDL code into a bit file that can be used to program the Xilinx chip. The synthesis process involves compiling the VHDL code down into an EDIF (Electronic Design Interchange Format) net list using Synplicity's Synplify tool and then importing that net list into Xilinx's own place-and-route software (Xilinx Foundation Software). Synplify outputs timing reports of the design (see Appendix A). These are estimates from the logic synthesis without any place-and-route timing information, since place-and-route is performed afterwards using Xilinx’s software. Xilinx's software takes the net list and a user's constraint file (.ucf file) as input, and places and routes the logic into the specific target Xilinx FPGA chip. The user's constraints file tells, among other things, the FPGA pin assignments for the signals in the design. There are options in the Xilinx place-and-route software to do various reports, including a report of timing information that uses the placement and routing data and a report of resource usage (see Appendix B). This information was useful in determining the percentage of the chip that was used and if the logic had sufficient margin to meet the timing requirements. Xilinx also outputs a VHDL file that is used for simulation. This file gives even more accurate timing information as it is based on the actual placement and routing of the design. The test bench simulation was modified to instantiate this VHDL entity and provide the appropriate signals to test the design with more accurate timing information. This process is called back annotation. Back annotation was done with the initial design and it showed that the timing was well within design margins. To save time in future modifications, it was decided to simply check the synthesis timing reports instead of performing back annotation each time. This method is adequate for development if the modifications made are not large enough, when compared to the available resources, to cause a concern regarding timing or resource usage. Further analysis, including another iteration of back annotation, will be performed before finalizing the design for flight.

Actual System Testing

 Despite the simulations that were performed, the initial system still took a considerable amount of time to debug. There were problems loading the FPGA via the processor. These were mostly due to the design’s improper use of processor bus control signals and its failure to constrain all the FPGA’s top-level signals to the appropriate pins. After resolving these issues, initial debugging and testing of the state machines and other signals was performed via the test pins on the FPGA board. When the design became fairly stable, further tests were performed through the system’s testing. A few remaining problems were uncovered with this further testing. These were resolved quickly with the aid of using test pins to view various internal signals of the design.

FPGA design to interface with Star250 APS

 The company that made the original detector for the APS project, is no longer involved in the detector business for the aerospace industry. This action left the project with only a few sensor chips and incomplete design files for the foundry process. This, along with the desire to compare alternate APS devices, gave the project incentive to search for a more readily available detector. Fillfactory, a Belgium company that makes radiation-hardened APS detectors, was selected and several of their Star250 APS detectors were purchased for evaluation.

 A development/testing system, designed to interface with the Star250 detector had to be developed. The FPGA needed to be redesigned to provide the timing signals for the Star250. The modularity of the FPGA design enabled the reuse of the processor and memory VHDL portions of the design. Only the sensor-specific VHDL code had to be redesigned. The sensor-specific VHDL code for the Star250 is more complex than that of the Photobit detector. The previous detector used control signals that could access or reset individual pixels. Commands written to memory by the processor were all commands to individual pixels. This put the burden of dealing with windows of pixels in the software that the processor was executing. The Star250 detector, on the other hand, is designed so that the control signals would be window-related (see Figures 5 and 6). Reset and read control signals and timing are designed to work with internal state machines to reset and read rows of pixels. The portion of the logic used in resetting and reading windows of pixels migrated from the processor’s software into the FPGA design. Software commands are now window-based commands. The FPGA has to take these window-based commands and create the appropriate control logic for reading/resetting the rows and the columns from the sensor (see Figure 7).

 A board was fabricated with an FPGA that operates the Star250 sensor on its own by continuously reading the same window, without any input from the processor. Response behavior was observed as the timing of the control signals was varied. The method of controlling the sensor was sufficient to get a fairly good response (note: some irregularities remain in the sensor’s output; the project plans to further investigate these irregularities at a later time). The sensor control logic for the standalone FPGA design was eventually incorporated into the full FPGA design with the processor and memory interface. The debug for this full FPGA design did not take long since there was a lot of reuse of the previous FPGA design and the standalone Star250 FPGA design.

[image: image1.png]:::::
chchch

T

Figure 5. Timing sequence to start accessing a row (taken from Star 250 datasheet)

 [image: image2.png]

Figure 6. Reading out individual columns in a specific row (taken from Star250 datasheet)

 (Outside FPGA

 (Outside FPGA

Figure 7. Expanded View of FPGA’s Star250 Sensor Control Logic Hierarchy

 Data collection results with the Star250 system were compared to those from the earlier development system, and the results showed the Star250 sensitivity to be approximately four times higher than the previous detector. Due to the higher sensitivity and the availability of the sensor, the project decided to target the Star250 detector for further star tracker system development and flight.

Modifying the Star250 FPGA design to interface with the ColdFire processor

 The General Dynamics ColdFire 5208 processor was chosen as the target flight processor because a radiation-hardened version is readily available. For the development system, the commercially available MCF5307 ColdFire was used. Although it is not radiation-hardened, it is very similar in behavior and timing to the ColdFire 5208. The FPGA required modifications to change the processor interface from the 586-processor bus to the ColdFire-based bus. After obtaining several evaluation boards for the MCF5307 (M5307C3 Evaluation Board), the MCF5307’s internal registers were configured to perform writes and reads to external devices, such as the FPGA, by programming an available chip select. The timing of reads and writes over the bus were observed with both a logic analyzer and with referral to the MCF5307 user’s manual (see Figures 8 and 9). After analyzing the timing of writes and reads, a test FPGA was designed that wrote to and read from an internal register when accessed. Based on the processor interface in the test FPGA, changes were incorporated into the full FPGA design to replace the 586 processor interface logic with the ColdFire interface logic.

[image: image3.png]9 s w om o w s

scuo_| L, |

o
e
it
™
=
s
=8| /S
o310 fot

Figure 8. Basic ColdFire Processor Read Cycle (taken from user’s manual)
[image: image4.png]s 5
sako [LT LT |
A

o) ST

[

™
B

R\ —

ot

=

Figure 9. Basic ColdFire Processor Write Cycle (taken from user’s manual)
CURRENT AND FUTURE WORK

 With the processor and sensor interfaces finalized, the current FPGA logic is close to its final form for flight. Initial testing of the FPGA has been successful. Continued use of this development system will provide even more extensive testing. The FPGA logic will then need to be ported and retested with the selected radiation-hardened Actel FPGA for flight. Detailed simulation (via back annotation) and analysis will be performed to verify proper timing margins, check Actel FPGA resource usage, and to verify the implementation is effective in reducing sensitivity to single-event radiation effects. The design will also undergo reviews to ensure that NASA Procedures and Guidelines, such as 561-PG-8700.2.1 (Flight Field Programmable Gate Array Design Guidelines) and 564-PG-8700.2.1 (ASIC/FPGA Design Guide), have been followed and that the design has been thoroughly analyzed and tested.

CONCLUSION

 The flexibility of this design in accommodating the various modifications that were required as the APS star tracker evolved into a flight system demonstrates the value in providing a modular design that is written in a standard, portable language. Creating a modular design eases the task of future modifications by allowing modifications to be localized to a certain subset of the design, allowing reuse of the unaffected portions or modules of the design. The debugging cycle in the development process is shortened with extensive simulation and provision in the design for testability. The quick replication of design problems with a comprehensive test bench/simulation is well worth the effort, allowing for the elimination of initial design problems and replication of problems that may be harder to reproduce in a lab environment. Enabling each module to output test signals provides a detailed view of the design in action to quickly determine the cause of a problem. The use of the VHDL standard as the language for the design allows for portability as the logic of the design is made independent of the particular chip that is targeted and can be imported and used in any major vendor’s tool chain. The APS star tracker FPGA allows for ease of modification and testing due to careful attention in the design process to provide a well-structured, portable design.

APPENDIX A – EXCERPTS FROM SYNPLIFY TIMING AND RESOURCE USAGE REPORTS

Note: Actual internal clock is 10MHz (100 nanosecond period) although report target was set to try and achieve 20 MHz (50 nanosecond period) timing

STAR TRACKER FPGA WITH PHOTOBIT SENSOR AND 586 PROCESSOR:
 Performance Summary

Worst slack in design: 13.550

 Requested Estimated Requested Estimated Clock

Starting Clock Frequency Frequency Period Period Slack Type

--

internalclk_inferred_clock 20.0 MHz 32.0 MHz 50.000 31.250 18.750 inferred

System 20.0 MHz 27.4 MHz 50.000 36.450 13.550 system

Resource Usage Report for starTracker

Mapping to part: xcs40pq240-3

Cell usage:

VCC 3 uses

GND 5 uses

FD 164 uses

FDC 6 uses

FDCE 156 uses

keepbuf 55 uses

I/O primitives:

OBUFT 34 uses

IBUF 68 uses

OBUF 75 uses

BUFG 2 uses

Carry primitives used for arithmetic functions:

ADD-G-F1 1 use

INC-FG-CI 40 uses

EXAMINE-CI 2 uses

FORCE-0 1 use

ADD-FG-CI 9 uses

INC-FG-1 5 uses

I/O Register bits: 0

Register bits not including I/Os: 326

Internal tri-state buffer usage summary

TBUFs + BUFEs: 48

Logic Mapping Summary:

FMAPs: 445 of 1568 (29%)

HMAPs: 101 of 784 (13%)

Total packed CLBs: 223 of 784 (29%) (Packed CLBs is determined by the larger of three quantities:

 Registers / 2, HMAPs, or FMAPs / 2.)
STAR TRACKER FPGA WITH STAR 250 SENSOR AND 586 PROCESSOR:

Performance Summary

Worst slack in design: 13.330

 Requested Estimated Requested Estimated Clock

Starting Clock Frequency Frequency Period Period Slack Type

--

iExternalClk 20.0 MHz 121.7 MHz 50.000 8.220 41.780 inferred

internalclk_inferred_clock 20.0 MHz 27.3 MHz 50.000 36.670 13.330 inferred

System 20.0 MHz 33.6 MHz 50.000 29.740 20.260 system

Resource Usage Report for starTracker

Mapping to part: xcs40pq240-3

Cell usage:

VCC 5 uses

GND 6 uses

FD 142 uses

FDC 6 uses

FDCE 246 uses

I/O primitives:

OBUFT 34 uses

IBUF 70 uses

OBUF 74 uses

BUFG 2 uses

Carry primitives used for arithmetic functions:

ADD-G-F1 1 use

INC-FG-CI 56 uses

EXAMINE-CI 4 uses

INC-FG-1 10 uses

I/O Register bits: 0

Register bits not including I/Os: 394

Internal tri-state buffer usage summary

TBUFs + BUFEs: 32

Logic Mapping Summary:

FMAPs: 698 of 1568 (45%)

HMAPs: 157 of 784 (21%)

Total packed CLBs: 157 of 784 (21%) (Packed CLBs is determined by the larger of three quantities:

 Registers / 2, HMAPs, or FMAPs / 2.)
STAR TRACKER FPGA WITH STAR 250 SENSOR AND COLDFIRE PROCESSOR:

Performance Summary

Worst slack in design: 28.761

 Requested Estimated Requested Estimated Clock

Starting Clock Frequency Frequency Period Period Slack Type

--

iProcClk 20.0 MHz 251.9 MHz 50.000 3.970 46.030 inferred

internalclk_inferred_clock 20.0 MHz 47.1 MHz 50.000 21.239 28.761 inferred

System 20.0 MHz 56.5 MHz 50.000 17.700 32.300 system

Resource Usage Report for starTracker

Mapping to part: xcs40xlpq240-5

Cell usage:

GND 6 uses

FD 136 uses

FDC 1 use

FDCE 249 uses

VCC 4 uses

I/O primitives:

OBUFT 33 uses

IBUF 57 uses

OBUF 64 uses

BUFG 2 uses

Carry primitives used for arithmetic functions:

ADD-G-F1 1 use

INC-FG-CI 53 uses

EXAMINE-CI 4 uses

INC-FG-1 10 uses

I/O Register bits: 0

Register bits not including I/Os: 386

Internal tri-state buffer usage summary

TBUFs + BUFEs: 32

Logic Mapping Summary:

FMAPs: 660 of 1568 (43%)

HMAPs: 170 of 784 (22%)

Total packed CLBs: 330 of 784 (43%)

(Packed CLBs is determined by the larger of three quantities:

 Registers / 2, HMAPs, or FMAPs / 2.)

APPENDIX B – EXCERPTS FROM XILINX TIMING REPORTS

Note: Actual internal clock is 10MHz (100 nanosecond period) although report target was set to try and achieve 20 MHz (50nanosecond period) timing

STAR TRACKER FPGA WITH PHOTOBIT SENSOR AND 586 PROCESSOR:

--

Release 4.2.02i - Trace E.35

Copyright (c) 1995-2001 Xilinx, Inc. All rights reserved.

trce starTracker.ncd starTracker.pcf -e 3 -o starTracker.twr -xml

starTracker.twx

Design file: startracker.ncd

Physical constraint file: startracker.pcf

Device,speed: xcs40,-3 (D 1.3 FINAL)

Report level: error report

Timing constraint: NET "internalclk" PERIOD = 50 nS HIGH 50.000000 % ;

 4342 items analyzed, 0 timing errors detected.

 Minimum period is 39.892ns.

--

All constraints were met.

Data Sheet report:

No constraints were found to generate data for the Data Sheet Report section.

Use the Advanced Analysis (-a) option or generate global constraints for each

clock, its pad to setup and clock to pad paths, and a pad to pad constraint.

WARNING:Timing:2554 - Clock nets using non-dedicated resources were found in

 this design. Clock skew on these resources will not be automatically

 addressed during path analysis. To create a timing report that analyzes

 clock skew for these paths, run trce with the '-skew' option.

 The following clock nets use non-dedicated resources:

 pxtst<7>

Timing summary:

Timing errors: 0 Score: 0

Constraints cover 4342 paths, 0 nets, and 1591 connections (75.3% coverage)

Analysis completed Thu Oct 03 11:02:04 2002

STAR TRACKER FPGA WITH STAR 250 SENSOR AND 586 PROCESSOR:

--

Release 4.2.02i - Trace E.35

Copyright (c) 1995-2001 Xilinx, Inc. All rights reserved.

trce starTracker.ncd starTracker.pcf -e 3 -o starTracker.twr -xml

starTracker.twx

Design file: startracker.ncd

Physical constraint file: startracker.pcf

Device,speed: xcs40,-3 (D 1.3 FINAL)

Report level: error report

--

Timing constraint: TS_iExternalClk = PERIOD TIMEGRP "iExternalClk" 50 nS HIGH 50.000000 % ;

0 items analyzed, 0 timing errors detected.

--

Timing constraint: TS_internalclk = PERIOD TIMEGRP "internalclk" TS_iExternalClk * 1.000000 HIGH

50.000 % ;

 12554 items analyzed, 0 timing errors detected.

 Minimum period is 49.018ns.

--

Timing constraint: TS_oSwInt_internalclk = MAXDELAY FROM TIMEGRP "internalclk" TO TIMEGRP "oSwInt"

50 nS ;

 433 items analyzed, 0 timing errors detected.

 Maximum delay is 43.523ns.

--

Timing constraint: TS_iProcAddr_0__internalclk = MAXDELAY FROM TIMEGRP "iProcAddr_0_" TO TIMEGRP

"internalclk" 50 nS ;

 4167 items analyzed, 0 timing errors detected.

 Maximum delay is 45.973ns.

All constraints were met.

Data Sheet report:

All values displayed in nanoseconds (ns)

Clock to Setup on destination clock iExternalClk

---------------+---------+---------+---------+---------+

 | Src:Rise| Src:Fall| Src:Rise| Src:Fall|

Source Clock |Dest:Rise|Dest:Rise|Dest:Fall|Dest:Fall|

---------------+---------+---------+---------+---------+

iExternalClk | 6.453| | | |

---------------+---------+---------+---------+---------+

WARNING:Timing:2554 - Clock nets using non-dedicated resources were found in

 this design. Clock skew on these resources will not be automatically

 addressed during path analysis. To create a timing report that analyzes

 clock skew for these paths, run trce with the '-skew' option.

 The following clock nets use non-dedicated resources:

 iinternalclk

Timing summary:

Timing errors: 0 Score: 0

Constraints cover 17154 paths, 0 nets, and 2891 connections (95.2% coverage)

Analysis completed Tue Nov 12 11:23:18 2002

--
STAR TRACKER FPGA WITH STAR 250 SENSOR AND COLDFIRE PROCESSOR:

--

Release 4.2.02i - Trace E.35

Copyright (c) 1995-2001 Xilinx, Inc. All rights reserved.

trce starTracker.ncd starTracker.pcf -e 3 -o starTracker.twr -xml

starTracker.twx

Design file: startracker.ncd

Physical constraint file: startracker.pcf

Device,speed: xcs40xl,-5 (FINAL 1.19 2001-12-19)

Report level: error report

--

Timing constraint: TS_iProcClk = PERIOD TIMEGRP "iProcClk" 50 nS HIGH 50.000000 % ;

 0 items analyzed, 0 timing errors detected.

--

Timing constraint: TS_internalclk = PERIOD TIMEGRP "internalclk" TS_iProcClk * 1.000000 HIGH

50.000 % ;

 12308 items analyzed, 0 timing errors detected.

 Minimum period is 36.771ns.

--

Timing constraint: TS_oSwInt_n_internalclk = MAXDELAY FROM TIMEGRP "internalclk" TO TIMEGRP

"oSwInt_n" 50 nS ;

 391 items analyzed, 0 timing errors detected.

 Maximum delay is 25.355ns.

--

Timing constraint: TS_iProcRd_Wr_n_internalclk = MAXDELAY FROM TIMEGRP "iProcRd_Wr_n" TO TIMEGRP

"internalclk" 50 nS ;

 242 items analyzed, 0 timing errors detected.

 Maximum delay is 18.023ns.

--

All constraints were met.

Data Sheet report:

All values displayed in nanoseconds (ns)

Clock to Setup on destination clock iProcClk

---------------+---------+---------+---------+---------+

 | Src:Rise| Src:Fall| Src:Rise| Src:Fall|

Source Clock |Dest:Rise|Dest:Rise|Dest:Fall|Dest:Fall|

---------------+---------+---------+---------+---------+

iProcClk | 2.462| | | |

---------------+---------+---------+---------+---------+

WARNING:Timing:2554 - Clock nets using non-dedicated resources were found in

 this design. Clock skew on these resources will not be automatically

 addressed during path analysis. To create a timing report that analyzes

 clock skew for these paths, run trce with the '-skew' option.

 The following clock nets use non-dedicated resources:

 procclk proctst<7>

Timing summary:

Timing errors: 0 Score: 0

Constraints cover 12941 paths, 0 nets, and 2887 connections (97.9% coverage)

Analysis completed Fri Feb 21 16:43:17 2003

--
Active�Pixel

Sensor

 (APS)

Processor

External Analog to Digital Converter

FPGA

Processor

Sensor / Detector

Processor Control

Entity

Pixel Access

Control �Entity

Memory Control�Entity

StarTracker

Top-Level Entity

Memory:

Command Buffer at 0x0

Data Buffer at 0x1000

Individual Command Processing�Entity

Sensor

Command Queue Processing Entity

Pixel Access Control Entity

Memory Control Entity

Read Window Command Processing�Entity

Reset Window Command Processing�Entity

Sensor

Command Queue Processing Entity

Pixel Access Control Entity

OUTPUT

DATA

FILE

FPGA DESIGN IN VHDL

PROCESSOR SIMULATION MODEL

APS SENSOR SIMULATION MODEL

MEMORY SIMULATION MODEL

INPUT COMMANDS

FILE

TOP-LEVEL VHDL FILE / TESTBENCH RUN IN SIMULATOR

Memory Control Entity

Memory:� Command Buffer at 0x0

Data Buffer at 0x1000

PAGE
1

