Design of PCI/Flasher FPGA for SpaceLAN Network Interface Card

Noosha Haghani, Code 561

Flight Data Systems and Radiation Effects Branch

NASA/Goddard Space Flight Center

PIP II Report, February 2003

31.
Abstract

2.
Introduction
3
2.1.
SpaceLAN Overview
3
2.2.
Network Interface Card (NIC) Overview
4
3.
Design Considerations
7
3.1.
PCI Core Configuration
7
3.2.
Xilinx Configuration Process
8
3.3.
Flasher Actel
9
4.
Implementations
11
4.1.
Memory Map
11
4.2.
PCI Interface
11
4.3.
Flash Programming
13
4.4.
Xilinx Programming
16
5.
Status / Future Development
17
6.
Conclusion
18
7.
Acronyms
18

1. Abstract

This paper will discuss the design and development of a Peripheral Component Interconnect (PCI) bus as well as an interface between the PCI bus and a Flash memory chip. This particular design is used on the development unit Network Interface Card (NIC) built for the SpaceLAN project. Overviews of SpaceLAN, Ethernet, PCI and Flash will be will be given as well as some important design considerations. Furthermore, details of design implementation and future effort will also be presented.

2. Introduction

My PIP Level II responsibilities are divided into two different tasks. The first task includes leading the evaluation, modification, and simulation of the Actel Peripheral Component Interconnect (PCI) core to meet board-level requirements. The second task involves the design of a Flash/Xilinx programmer found on a Network Interface Card for the SpaceLAN project. This project entails learning about PCI interface and data cycles, the Flash memory chip, and the Xilinx configuration process. Further detail will be provided in the following sections.

2.1. SpaceLAN Overview

SpaceLAN is research and development effort to create a new network interface for spacecraft communications. The goal of the project is to develop a NIC board that will serve as the network interface for a spacecraft subsystem or instrument. This card may also be used as a switch between instrument data and nodes. In past missions more than one network was used to move data, which made the design process more difficult and increased costs. The benefits of this card include faster data rate transfers and cheaper development costs.

The SpaceLAN Network Interface Card shall support two network protocols known as Ethernet and SpaceWire. For the purposes of this presentation, only the Ethernet protocol shall be referenced.

Ethernet is a communications standard or protocol that defines data communication between computers in a local area network (LAN). This standard is the most widely used LAN technology based on its cost, reliability, and availability. Ethernet data rates include 10 Mbps, 100 Mbps, and even 1000 Mbps (known as Gigabit Ethernet). For current design purposes, the NIC card will only be operating at either 10 or 100 Mbps. Different medias such as coaxial cable, twisted pair and fiber optics can be used to transfer Ethernet data. The SpaceLAN NIC shall use the twisted pair cable for such transfers.

2.2. Network Interface Card (NIC) Overview

The NIC will interface between data from the spacecraft network and a subsystem or instrument. The card will be connected to a PCI bus in order to talk to other cards including the processor. Figure 2-1 depicts an example of the NIC off the PCI backplane.

[image: image1.wmf]PCI BUS

PROC

MEM

NIC

SWITCH

N1

N2

N3

Figure 2-1 NIC Box Implementation
Along with behaving as an Ethernet network interface, this card can be programmed with several other functionalities including an Ethernet switch between nodes and a SpaceWire network interface, an emerging network standard specific to space applications containing high bandwidth and high data rates. See Figures 2-2A and 2-2B.

[image: image2.wmf]PCI

SpaceWire

NIC /

Switch

Processor

INSTR 1

PWR

INSTR 2

GN&C

SpaceWire

Figure 2-2a SpaceWire Interface implementation

[image: image3.wmf]Ethernet

NIC

Processor

Memory

Switch

Switch

N1

N2

N3

N4

N1

N2

N3

N4

PCI

Bus

Ethernet

Ethernet

P

C

I

B

U

S

Figure 2-2B Ethernet Network Interface and Switch
As an Ethernet network interface, this board contains two Ethernet different nodes supplying data. Data coming through the nodes is processed by the Media Access Controller (MAC) core located in one of the field programmable gate arrays (FPGAs) found on the board. The data is then stored in a static random access memory chip (SRAM) to be passed through the PCI bus to the software for processing. This is known as the Receive Data. Data can also be passed from the software through the NIC card and out. This is known as Transmit Data.

A board layout of the NIC is shown in Figure 2-3. Major components of the development board include two FPGAs, one a Xilinx FPGA containing the MAC core and the other and Actel FPGA for the PCI Core, 4 256K x 16 SRAMS used for data storage, a Flash memory module, and an Ethernet transceiver.

[image: image4.wmf]Xilinx Vertex

II FPGA

Actel

FPGA

(PCI Core/

Flasher)

256K x 16

SRAM

10/100/1000

Ethernet

Transciever

CPCI Interface

CPCI Rear Panel I/F

RS232

Converter

Test Access Port

Test Access Port

Test Access Port

Test Access Port

Test Access Port

1.8 V

Regulator

OSC

RS232

Port

50 Pin

Universal Connector

50 Pin

Universal Connector

LED’s

FLASH

LED’s

256K x 16

SRAM

256K x 16

SRAM

256K x 16

SRAM

RJ

-

45

Jack

1.5 V

Regulator

Figure 2-3 NIC Board layout
Each incoming Ethernet frame can contain up to 1546 bytes of data including header. The MAC core located in the Xilinx FPGA will process the frame by updating receive status registers and appending a 4 byte header indicating frame length and status for software. The Xilinx will also strip the Cyclic Redundancy Check (CRC) found at the end of each Ethernet frame. The FPGA will then write the data to one of the SRAMs used for Receive Data for future processing.

On outgoing frames, the software will append a similar header to each transmit frame and write the frame to the SRAM used for Transmit Data. The Xilinx will then strip this additional header from software, generate the CRC, and send the frame out of the card. After transmission of each frame, the Xilinx FPGA will update the transmit status registers appropriately. Direct memory access (DMA) shall be used to transfer data to and from the NIC SRAMs.

Details of the design and operation of the NIC is outside the scope of this paper.

3. Design Considerations

3.1. PCI Core Configuration
The PCI bus is a local bus that allows communication between multiple devices. Data up to 64 bits at a time can be transferred. However, the NIC only supports 32-bit data transactions. There are two participants in a PCI data transfer: the initiator or bus master and the target. For example, a typical PCI transaction would include the processor, or master, requesting to read a register from the NIC, or target, that contains status regarding Ethernet frame errors. This data is then passed from the NIC through the PCI bus to the processor.

In order to interface to the PCI bus, an Intellectual Property (IP) core was purchased from Actel. The PCI Core shall reside in an Actel RT54SX72A FPGA. The core has the ability to transfer multiple amounts of data bytes with minimum overhead. This process is known as Direct Memory Access (DMA). Although several implementations of the core are available, the Target with DMA configuration is to be used. This version of the core is capable of DMA only when the PCI master instructs it. Originally, the core configuration (Target/Master) that allows the target to initiate DMA was desired, but after some analysis, it was discovered that the Target with DMA implementation would make other design easier.

The PCI core operates at a clock frequency of 33 MHz. Thus, it was decided that the interface to the PCI core would run at the same clock rate. Synchronization of data between two different clock domains was no longer required, hence, making the design easier.

3.2. Xilinx Configuration Process
The Xilinx Virtex II FPGA is a programmable logic device containing most of the digital logic that controls the NIC board’s functionality. The FPGA’s architecture features a matrix of logic cells surrounded by a periphery of Input/Output (I/O) cells. Because of the device’s high density (around one million gates), the Xilinx Virtex II FPGA can accommodate very large and complex designs. The Xilinx Virtex II FPGA houses the design of the MAC core as well as the PCI backend interface and SRAM controllers.

This Xilinx FPGA is an SRAM based device. In other words, after recycling power, the device needs to be reprogrammed before it can be used. The Xilinx can be configured at anytime with a new design. Configuration is the process of programming a new design image into the Xilinx. Several modes of configuration exist: Master Serial Mode, Slave Serial Mode, SelectMAP Mode, and Joint Test Access Group (JTAG).

The first mode considered was the Master Serial Mode. This mode requires the use of on-board Programmable Read Only Memory (PROM). Because the Xilinx can fit up to 2.5 Megabytes of data, as many as 4 PROMs would be required to support this mode. Furthermore, the PROMs are not easily re-programmable for new configuration images.

The next considered mode was JTAG. JTAG is the hardware method of talking to memory or Flash without requiring an application running on the hardware. This method requires an external connector and is often slower than other methods. Along the same lines, the Slave Serial Mode requires an external clock, a microprocessor, another FPGA, and a download cable. Furthermore, this mode only supports downloading one bit at a time.

Designers desired the process of configuring the FPGA to include the PCI bus. Thus, the SelectMAP Mode of configuration was chosen. This mode allows the reading and writing of configuration data through byte wide ports. Data is loaded from the PCI interface to a backend memory device. When Xilinx configuration is required, the data is loaded from the memory device into the Xilinx through handshaking.

Now that the configuration mode had been selected, the type of memory device that would hold the Xilinx configuration image needed to be defined. Several devices supported this such as Erasable Programmable Read Only Memory (EEPROM), Flash, and Non-Volatile Random Access Memory (NVRAM). After extensive research, it was discovered that EEPROMs and NVRAMs did not tend to be large enough to support a 2.5 MB image. Also, EEPROMs are generally too slow. Hence, the decision was made to use an on-board Flash as the configuration image storage device.

3.3. Flasher Actel
In order to avoid adding an additional FPGA to the NIC board, the board designers decided to place the development code to program the Flash and configure the Xilinx inside the Actel containing the PCI Core. However, the number of pins available in the flat pack Actel FPGA was not enough to support the PCI core pins as well as the pins required for the Flash and the Xilinx configuration. The Flash address bus for programming required at least 22 pins. These pins were not available off of the Actel FPGA. Thus, the decision was made to add 3 discrete flip-flops on the NIC card to support the Flash address bus. Only 8 pins shall be used going to each the flip-flops. Figure 3-1 depicts the interface between the Flasher Actel, the Flash, and the Xilinx.
[image: image10.wmf]PCI CORE /

FLASHER FPGA

LOC_RSTn

FLASH

D[7:0]

Q[7:0]

OE

D[7:0]

Q[7:0]

OE

D[7:0]

Q[7:0]

OE

XILINX

FLASH_ADDR[7:0]

FF_ENABLE1

FF_ENABLE2

FF_ENABLE3

FLASH_WEn

FLASH_CEn

FLASH_OEn

FLASH_RD/BYn

DOUT[7:0]

A[22:0]

CHIP_ENn

WRITE_ENn

OUTPUT_ENn

RDY/BUSYn

RSTn

DATA[7:0]

RSTn

DIN[7:0]

CCLK

CLK

RSTn

DONE

INITn

BUSYn

CHIP_SELECTn

WRITEn

PROGRAMn

X_DONE

X_INITn

X_BUSYn

X_CHIP_SELECTn

X_WRITEn

X_PROGRAMn

Figure 3-1 Flasher FPGA Interface with Flash and Xilinx
4. Implementations

4.1. Memory Map
The PCI Core has two base addresses for memory mapping. The first base address, Base Address 0, shall be used for all register definitions required for the entire NIC card. Base Address 1 shall be used for the PCI/Flasher FPGA only. No DMA is allowed for registers off Base Address 1.

The memory map for the PCI/Flasher FPGA shall be divided into two main sections. There is a total of 16 MB of addressable memory on the backend of the PCI Core (24 address bits). The first 8 Megabytes shall be for the FLASH memory component only. The remaining memory space shall be for Control Registers and future use. For now, PCI_BAR1 will be used to indicate the start address of the base memory address.

	PCI Address [31:0]
	Function

	Start
	End
	

	PCI_BAR1 + 0x00080000
	-
	CmdReg – Command Register signaling different commands to be issued

	PCI_BAR1 + 0x00080004
	-
	StatusReg – Status Register for software to poll

	PCI_BAR1 + 0x00080008
	-
	AddrReg – Address Register for Flash Programming

	PCI_BAR1 + 0x0008000C
	-
	DataWriteReg – Data Write Register that contains Flash commands and program bytes

	PCI_BAR1 + 0x00080010
	-
	DataReadReg – Data Read Register that contains Flash data to be read back through PCI

Figure 4-1 PCI Core Flasher Memory Map

4.2. PCI Interface

The state machine in Figure 4-2 shows the handshaking used between the PCI Core and the Flasher backend interface. The state machine contains two different paths to follow, one for a PCI write cycle and the other for a PCI read cycle. The process begins with a “Dp_Start” signal issued from the PCI backend. After latching the address of the PCI data transfer to occur, the state machine determines the type of PCI cycle to occur, either read or write. It then branches in the appropriate direction. Only one read or write can occur per PCI transaction. In other words, no burst or DMA transactions will occur, thus, no part of the state machine is recursive.

For each read or write cycle, the Flasher backend will send a ready signal to the core (either “Rd_Be_Rdy” or “Wr_Be_Rdy”) to indicate that it can now receive or send data. The core will respond with a “Rd_Be_Now” or a “Wr_Be_Now”, depending on the type of PCI cycle. These signals indicate that data will be read in from or written to the backend data bus on the next rising edge of the PCI clock. After this occurs, the PCI cycle is complete and the state machine returns to the IDLE state waiting for the next “Dp_Start” signal to be issued.

[image: image5.wmf]IDLE

LATCH

ADDRESS

RD OR

WR

WR RDY

WR DATA

WR DONE

RD

SETUP

RD RDY

RD DONE

RD DATA

Rd_Be_Rdy = '0'

Wr_Be_Rdy = '0'

Addr_Latch = '0'

Out_En = '0'

RDn = '1'

WRn = '1'

DP_Start = '0'

DP_Start = '1'

Bar1_Cyc = '1'

Wr_Cyc = '1'

Rd_Cyc = '1'

Data_Rdy = '1'

Wr_Be_Now = '1'

Rd_Be_Now = '1'

Addr_Latch = '1'

Wr_Be_Rdy = '1'

Addr_Latch = '0'

Wr_Be_Rdy = '0'

WRn = '0'

Addr_Latch = '0'

WRn = '1'

Out_En = '1'

RDn = '0'

Rd_Be_Rdy = '1'

RDn = '1'

Rd_Be_Rdy = '1'

Out_En = '1'

Figure 4-2 PCI Interface FSM

4.3. Flash Programming
Flash memory is a solid-state storage device used for easy and fast information storage. This device is very similar to the compact flash used in digital cameras. On the NIC board, the flash is used to store the Xilinx Virtex II FPGA configuration image. The size of the flash chosen for this card is an 8 Megabyte x 8-bit flash. The Xilinx used on the NIC only requires 2.5 MB of space, thus, there is a lot of space for future expansion.

Data shall be programmed into the Flash using the PCI bus. In other words, software shall supply the data to program a Xilinx image into the Flash. The Flash can only be programmed on byte-wide boundaries thus data supplied by software shall be only 8-bits wide per write.

The Flash uses a command interface for control. The only commands used at this time shall be the Program and Chip Erase commands. The Chip Erase command sequence needs to be issued prior to any Flash programming and contains a total of 6 individual bytes. The Program command needs to be issued prior to every byte that is written to the Flash. This command sequence contains 3 individual bytes prior to the data byte to be written into the Flash. Therefore, a total of 4 bytes are written (3-byte overhead) into the Flash for a single byte write.

The command sequences are as follows:

Program Command

[image: image11.wmf]XXX

XXX

XXX

PA

Address:

[image: image12.wmf]AA

55

A0

PD

Data:

Chip Erase Command

Address:

[image: image6.wmf]XXX

XXX

XXX

XXX

XXX

XXX

Data:

[image: image7.wmf]AA

55

80

AA

55

10

XXX – Don’t Care

PA – Address of data byte to be programmed

PD – Data byte to be programmed

Each data byte shall be written to the DataWriteReg register via a normal PCI write. DataWriteReg shall be 32-bits, but only the lower 8-bits shall be used. Software can set the upper bits to zeros. In a Program phase, the address (23 bits) shall be written into the AddrReg at the beginning of the command sequence. Unused bits can be set to zero. This is done in advance so that hardware can setup the Flash for a data write. After each complete command sequence is written to the DataWriteReg register, software shall poll the StatusReg register (Bit 0) to determine if the Flash is ready to receive another byte. The design flow for the Program command sequence is as follows:

[image: image8.wmf]Write address of data byte

to

AddrReg

via

PCI Write

Write command byte 'AA'

to

DataReg

register via

PCI Write

Is Flash ready?

Poll Bit 0 of

StatusReg

to

determine if Flash Ready

for next byte

No

Yes

Write command byte '55'

to

DataReg

register via

PCI Write

Is Flash ready?

Poll Bit 0 of

StatusReg

to

determine if Flash Ready

for next byte

No

Yes

Write command byte 'A0'

to

DataReg

register via

PCI Write

Is Flash ready?

Poll Bit 0 of

StatusReg

to

determine if Flash Ready

for next byte

No

Yes

Write data byte to

DataReg

register via PCI

Write

Is Flash ready?

Poll Bit 0 of

StatusReg

to

determine if Flash Ready

for next byte

No

Yes

Begin next command

sequence, if any

Figure 4-3 Flash Programming Flow Chart

No command sequence is required when reading from the Flash memory. A normal PCI Read transaction is used to read from the DataReadReg register. The process is as follows. A PCI write to the AddrReg register is done to indicate which address of the Flash shall be read. Then a PCI read is issued to read from the DataReadReg register. Once the hardware decodes (hit to DataReadReg register) that a read request has been issued from the Flash, it will use the address in AddrReg for the address of the data byte to be read from Flash. It then writes the data byte to the DataReadReg register and notifies the PCI that the data is valid in that register. In order to facilitate the reading process, a 32-bit double word is read at each time; however, only the last 8 bits are valid data. The upper bytes are set to zero. Reading from the StatusReg register does not follow this sequence. The address of the StatusReg register is driven on the PCI address bus for this read.

4.4. Xilinx Programming
Programming of the Xilinx begins immediately after programming an image to the Flash or after a Global Reset. This is accomplished by writing to a register in the FPGA memory map. Software shall write to Bit 1 of the CmdReg register indicating to begin Xilinx Configuration. In this write, all other bits shall be set to zeros. Hardware will begin configuration at this time. When configuration is complete, the Xilinx FPGA will send the status of ‘Done’ to the PCI/Flasher FPGA. The PCI/Flasher FPGA will then indicate this in its StatusReg register. Software polls the StatusReg register to determine if configuration is complete.
There are four steps in configuring the Xilinx for SelectMAP mode. The handshaking between the Flasher interface and the Xilinx interface is achieved using a state machine. The state machine begins once the PGM_XILINX command is issued. This will then initialize the Xilinx for programming and begin writing individual bytes until programming is complete. The final 6 states of the state machine are recursive and will repeat until the Xilinx issues a ‘DONE’ signal. See Figure 4-4.

[image: image9.wmf]Flash_Chip_En# = '1'

Flash_Out_En# = '1'

Xilinx_Write# = '1'

Xilinx_Pgm# = '1'

Xilinx_Chip_Sel# = '1'

Addr_Ctr_En = '0'

Cfg_Xilinx_Addr = '0'

PGM

XILINX

IDLE

INIT

XILINX

CFG

ADDR

CHIP

ENABLE

FLASH

OUTPUT

ENABLE

FLASH

WRITE

XILINX

BYTE

WRITE

ENABLE

XILINX

BYTE

WRITE

DONE

Xilinx_Pgm# = '0'

Xilinx_Pgm# = '1'

Cfg_Xilinx_Addr = '1'

Cfg_Xilinx_Addr = '0'

Flash_Chip_En# = '0'

Flash_Out_En# = '0'

Xilinx_Write# = '0'

Xilinx_Chip_Sel# = '0'

Flash_Chip_En# = '1'

Flash_Out_En# = '1'

Xilinx_Write# = '1'

Xilinx_Pgm# = '1'

Xilinx_Chip_Sel# = '1'

Addr_Ctr_En = '1'

Cfg_Xilinx_Cmd = '0'

Cfg_Xilinx_Cmd = '1

Wait_Done = '0'

Wait_Done = '1'

Xilinx_Init# = '0'

Xilinx_Init# = '1'

Addr_Cfg_Done = '0'

Addr_Cfg_Done = '1'

Figure 4-4 Xilinx Configuration FSM

5. Status / Future Development
All design and development of the Flasher interface has been completed. Code to merge the PCI Core with the Flasher Interface has also been completed. Basic simulations of the PCI Core have been performed in order to understand the PCI read and write cycles clearly. Functional simulations of the Flasher interface is underway, and extensive FPGA and board level simulations of the PCI/Flasher Interface FPGA shall be done. Careful attention will be paid to the place and route of the Flasher interface with the PCI Core so that the FPGA can run at its full potential.
6. Conclusion

The Flasher interface developed for the SpaceLAN project meets the design requirements. The interface to the backend of the PCI was implemented using simple PCI Target interface. No DMA or burst transactions were allowed. The PCI Core was merged with the Flasher interface and housed in one FPGA minimizing the number of FPGAs used on the Network Interface Card. Handshaking between the Flash chip, the Xilinx FPGA and the PCI/Flasher FPGA was implemented using state machines. Finally, synchronized design methodologies were used throughout the design.

Perhaps the biggest design challenge involved the PCI backend interface. Extensive knowledge the PCI transactions were necessary in order to understand how to develop the backend interface state machine to the PCI Core. In addition, control of the PCI backend data bus and other signals posed an issue because the Xilinx FPGA was also responsible for the driving of these signals at times.
7. Acronyms

CRC

Cyclic Redundancy Check

DMA

Direct Memory Access
EEPROM
Electronically Erasable Programmable Read Only Memory

FPGA
Field Programmable Gate Array

FSM

Finite State Machine

HDL

Hardware Description Language

I/O

Input/Output

IP

Intellectual Property

JTAG

Joint Test Action Group

LAN

Local Area Network

NIC

Network Interface Card

NVRAM
Non-volatile Random Access Memory

PCI

Peripheral Component Interconnect

PROM
Programmable Read Only Memory

� EMBED Visio.Drawing.6 ���

� EMBED Visio.Drawing.6 ���

� EMBED Visio.Drawing.6 ���

PAGE
2

[image: image13.wmf]PCI CORE /

FLASHER FPGA

LOC_RSTn

FLASH

D[7:0]

Q[7:0]

OE

D[7:0]

Q[7:0]

OE

D[7:0]

Q[7:0]

OE

XILINX

FLASH_ADDR[7:0]

FF_ENABLE1

FF_ENABLE2

FF_ENABLE3

FLASH_WEn

FLASH_CEn

FLASH_OEn

FLASH_RD/BYn

DOUT[7:0]

A[22:0]

CHIP_ENn

WRITE_ENn

OUTPUT_ENn

RDY/BUSYn

RSTn

DATA[7:0]

RSTn

DIN[7:0]

CCLK

CLK

RSTn

DONE

INITn

BUSYn

CHIP_SELECTn

WRITEn

PROGRAMn

X_DONE

X_INITn

X_BUSYn

X_CHIP_SELECTn

X_WRITEn

X_PROGRAMn

[image: image14.wmf]AA

55

A0

PD

[image: image15.wmf]XXX

XXX

XXX

PA

_1107587074.vsd

_1107678372.vsd

_1107688504.vsd

_1107678245.vsd

_1100954615.vsd

_1106052339.vsd

_1106378284.vsd

_1107586866.vsd

_1101196443.vsd

_1100954292.vsd

_1100954587.vsd

_1100954290.vsd

